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1 Abstract

In this problem, an analog implementation of positioning capability is developed for a simplified actu-
ator that is part of a Digital Micromirror Device (DMD). A schematic showing the mirror (moveable
electrode) is shown in Figure A.1.

The Basic Governing equations are shown in Appendix A.1. The Governing Differential Equations
formed from them are shown in (1.1), (1.2), and (1.3).

dx

dt
= v (1.1)

dv

dt
=

1

Mp

[
1

2
V 2
p

ε0εrAc

(x0 − x)2
−Ksx− fd − bpv

]
(1.2)

dVp
dt

=
Vin − Vp
RinCp(x)

=
(Vin − Vp)(x0 − x)

Rinε0εrAc

(1.3)

2 State Space Model

The Governing Differential Equations are non–linear and somewhat opaque. The State Space Block
Diagram shown in Figure 2.1 helps us intuit the behavior. The first node covers the electrical portion of
the system and is formed from Kirchoff’s Voltage Law (KVL). The supply voltage Vin(t) is equivalent
to the sum of the voltage across the resistor Rin and the plate voltage Vp, hence the positive feedback
of Vp shown in the diagram.

The second node covers the mechanical portion of the system and is formed using conservation of
energy. The electrostatic force fe is the primary coupling point between the electrical energy of the
voltage and the mechanical forces on the position of the plate, converting voltage to force per meter.
The second node has feedback in terms of viscous damping bpv and the stiffness of the spring Ksx.
The position of the plate x also feeds back to the first equation effecting the parallel plate capacitance
Cp(x).

1
Cp(x)

1
R

1
s

1
2
V 2
p

ε0εrAc

(x0−x)2
1

Mp

1
s

1
s

Vin

+

Cp(x)R
dVp

dt
R

dVp

dt

dVp

dt Vp fe

+

Mp
dv
dt

dv
dt v x

fd
-

+
bp

-

Ks-

Figure 2.1: The state space model in block diagram form. It is important
to note that the capacitance function is Cp(x) = ε0εrAc

x0−x
.

3 Operating Point Model

The Governing Differential Equations shown in (1.1), (1.2), and (1.3) are nonlinear and complicated.
An Operating Point Model is created using Taylor Series Approximation with the results in (3.1),
(3.2), and (3.3). The derivation of the Operating Point Model is covered in detail in Appendix B.

1



Darrell Ross
Report: Multivariable Modeling of Electrostatic Actuator Dynamics

University of Washington
EE 557 , Autumn 2015

d∆x

dt
= ∆v (3.1)

d∆v

dt
=

(
V 2
popε0εrAc

Mp(x0 − xop)3
− Ks

Mp

)
∆x−

(
bp
Mp

)
∆v +

(
Vpopε0εrAC

Mp(x0 − xop)2

)
∆Vp −

(
1

Mp

)
∆fd (3.2)

d∆Vp
dt

=

(
−Vinop − Vpop
Rinε0εrAc

)
∆x−

(
x0 − xop
Rinε0εrAc

)
∆Vp +

(
x0 − xop
Rinε0εrAc

)
∆Vin (3.3)

The Operating Point equations can be reduced to (3.4), (3.5), and (3.6) using the following observa-
tions:

1. At the operating point where the system is steady–state, Vin = Vp because there will be no
current across the resistor Rin. This eliminates the ∆x term from (3.3).

2. The remaining two terms in (3.3) can be combined.
3. 1

Mp
can be factored out of every entry in (3.2).

The Operating Point equations are shown in block diagram form in Figure 3.1.

d∆x

dt
= ∆v (3.4)

d∆v

dt
=

1

Mp

[(
V 2
popε0εrAc

(x0 − xop)3
−Ks

)
∆x− bp∆v +

(
Vpopε0εrAC

(x0 − xop)2

)
∆Vp −∆fd

]
(3.5)

d∆Vp
dt

=
(∆Vin −∆Vp)

Rin

(x0 − xop)
ε0εrAc

(3.6)

x0−xop

Rinε0εrAc

1
s

x0−xop

Rinε0εrAc

Vpopε0εrAc

(x0−xop)2
1

Mp

1
s

1
s

x0−xop

Rinε0εrAc
∆Vin ∆Vin

+

d∆Vp

dt ∆Vp

-

-

∆fd
-

Mp
d∆v
dt

d∆v
dt ∆v ∆x

bp

-

V 2
popε0εrAc

(x0−xop)3 −Ks

+

Figure 3.1: The Operating Point Model in block diagram form.

4 Reduced Operating Point Model

Beginning with (3.4), (3.5), and (3.6), the Operating Point Constants, C0, K0, and F0 can be solved
for by comparing to the provided Operating Point Equations from the assignment shown in (A.1),
(A.2), (A.3). Detailed derivations for each constant are shown in Appendix C.
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4.1 Operating Point Capacitance, C0

C0 =
ε0εrAc

x0 − xop
= Cp(xop) (4.1)

4.2 Operating Point Stiffness, K0

K0 =
V 2
popε0εrAc

(x0 − xop)3
(4.2)

4.3 Operating Point Charge per Meter, F0

F0 =
Vpopε0εrAc

(x0 − xop)2
(4.3)

4.4 Reduced Block Diagram

Using the reduced Operating Point Model, the block diagram can be greatly simplified as shown in
Figure 4.2.

1
RinC0

1
s

1
RinC0

F0
1

Mp

1
s

1
s

1
RinC0

∆Vin ∆Vin

+

d∆Vp

dt ∆Vp

-

-

∆fd
-

Mp
d∆v
dt

d∆v
dt ∆v ∆x

bp

-

K0 −Ks

+

Figure 4.2: The Reduced Operating Point Model in block diagram form.

5 Transfer Function

The transfer function is found by converting the simplified version of the Operating Point Equations
((A.1), (A.2), (A.3)) to the frequency domain via a Laplace Transform. It is convenient to separate
the ∆Vp and ∆Vin terms similar to (3.3) since, ultimately, we only care about ∆fd which means we
set ∆Vin = 0.

This process is completed using the constants F0, C0, and K0 calculated earlier.

s∆x = ∆v (5.1)

s∆v =
1

Mp

[(K0 −Ks)∆x− bp∆v − F0∆Vp −∆fd] (5.2)

s∆Vp =
1

RinC0

∆Vin −
1

RinC0

∆Vp (5.3)
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6 Dynamic Stiffness, fd
x

Solving for Dynamic Stiffness is shown in Appendix E. The result is shown here in (6.1).

∴
∆fd
∆x

= K0 −Ks − bps−Mps
2 (6.1)

where

K0 =
V 2
popε0εrAc

(x0 − xop)3

Vpop = ±

√
2Ksxop(x0 − xop)2

ε0εrAc

6.1 Dynamic Stiffness Plot

The dynamic stiffness function is shown plotted in Figure 6.1. In the plot of the frequency response
function, there is a clear resonant frequency when xop = 0.01mm and xop = 0.03mm. The frequencies
are 4.43Hz and 1.90Hz respectively. The remaining larger values of xop lack resonant frequencies.

Figure 6.1: A plot of Dynamic Stiffness vs Frequency for four values of xop.

Resonant frequencies here are bad as they represent holes in the dynamic stiffness. A further analysis
of Resonant Frequencies is conducted in Appendix F.
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6.2 Unit Verification

Verifying that all units work out is very important. For this process, the K0 term was produced by
substituting Vpop into the equation for K0. First, note that the reduced term for K0 has a [mm] value
divided by a [mm] value. This means the units cancel which means that correcting for meters instead
of millimeters is unnecessary. The Mps

2 term is in grams and needs to be in killograms. This is
corrected for by modifying the Mp input to be 0.001 instead of 1.0.

∆fd
∆x

=
2Ksxop

(x0 − xop)
−Ks − bps−Mps

2

[N ]

[mm]
=

[N/m] [mm]

[mm]
− [N/m]− [N ]

[m/s]

[1]

[s]
− [g]

[s2]

[N ]

[mm]
=

[N ]

[m]
− [N ]

[m]
− [N ]

[m]
− [g]

[s2]
(6.2)

Although it at first appeared that the last term of (6.2) was not correct, closer inspection, shown in
(6.3) and (6.4), shows that all units check out.

[N ] =
[kg] [m]

[s2]
(6.3)

[N ]

[m]
=

[kg]

[s2]
(6.4)

All units reduce to N/m which makes sense since we are relating the amount of disturbance force fd
required to change the location of the plate x.

7 Conclusions

This report covers the formulation of the transfer functions and analysis of dynamic stiffness for the
DMD. For the operating point model, there is a resonant frequency when xop ≤ 0.03mm. When xop
is greater than 0.03mm, the resonant frequency goes away. This suggests that in the design of this
device, the plate distance operating point should move more than 0.03mm. It would be acceptable
to move less than 0.03mm but only if the resonant frequency range for disturbance force fd could be
guaranteed to be avoided. With the resonance in the range of 2Hz to 6Hz it seems like avoiding them
all together would be a better bet.

If this were a digital function instead of analog. That is, if the plate had only two positions, x0 and
xop, then it should be designed such that xop > 0.033333mm. Ideally, it should be a bit more than
that so as to avoid the effects of the trough, shown in Figure F.1, entirely.

The Dynamic Stiffness plot can be shifted left by increasing Mp and right by decreasing it.
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A Appendix: Problem Description

Figure A.1: A schematic diagram of the Digital Micromirror Device
(DMD).

Variables of the DMD are defined as:

Cp(x) = parallel plate capacitance

R = source resistance = 1.0 ohm

ε0 = permittivity of empty space = 4π10−7 C2

N −m2

εr = relative permittivity = 1for air

x0 = initial open circuit position = 0.1mm

fe = electrostatic air gap force

fd = external load disturbance force

x = position of moving plate w.r.t. fixed plate

Ac = capacitor plate cross sectional area = 1in2

bp = viscous damping = 3× 10−4 N

m/s

Mp = mass of moving plate = 1gm

Ks = stiffness of spring = 1N/m

A.1 Governing Equations

The basic governing equations for the DMD shown in Figure A.1 are shown here.

Cp(x) =
ε0εrAc

x0 − x
(capacitance)

fe =
1

2
V 2
p

ε0εrAc

(x0 − x)2
(electrostatic force)

fx = Ksx (spring force)

Vin = iR + Vp,where i = Cp(x)
dVp
dt

(voltage loop)

Mp
dv

dt
= fe − fs − fd − bpv (Newton’s Law)
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A.2 Operating Point Equations

The operating point equations from the assignment are shown in (A.1), (A.2), and (A.3).

d∆x

dt
= ∆v (A.1)

d∆v

dt
=

1

Mp

[(K0 −Ks)∆x− F0∆Vp −∆fd − bp∆v] (A.2)

d∆Vp
dt

=
∆Vin −∆Vp

RinC0

(A.3)

B Appendix: Transfer Function Methods

Several methods exist for finding the Transfer Functions.

B.1 Direct Substitution

If the equations are simple enough, this solution is possible. Given the nature of this course, it is
unlikely we will get to apply this method.

1. Convert the time domain equations to the frequency domain using a LaPlace Transform.
2. Use direct substitution to solve for the desired variables for each Transfer Function relating each

input to each output.

B.2 State Space Approach

For this method, the equations are placed in matrix form and matrix math can be used to solve all
the transfer functions at the same time.

1. The equations are first stated in vector form as shown in (B.1).
2. The LaPlace Transform is done on each entry in the matrices.
3. Some matrix math is used to solve for the function of the state vector in one shot.
4. Finally the Transfer Function Matrix is produced.

 ẋv̇
V̇p

 =


∂x
∂x

∂x
∂v

∂x
∂Vp

∂v
∂x

∂v
∂v

∂v
∂Vp

∂Vp

∂x

∂Vp

∂v

∂Vp

∂Vp


 xv
Vp

+


∂x
∂Vin

∂x
∂fd

∂v
∂Vin

∂v
∂fd

∂Vp

∂Vin

∂Vp

∂fd

[Vin
fd

]
(B.1)

sX(s) = AX(s) +BU(s)

X(s) = [sI − A]−1BU(s)

where

[sI − A]−1 =
1

Det[sI − A]
Adj[sI − A]

The full transfer function matrix for this problem is shown in (D.2), although it was solved using the
next method.
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B.3 Operating Point Model Method

When the system of equations is complicated, converting to the frequency domain with the LaPlace
Transform can be very complicated. In these situations, the Operating Point Model can be used.

1. The system is solved at an Operating Point using Taylor Series Approximation (this is often
called linearization).

2. Once a linear set of equations is produced, they are easily converted to the frequency domain
via a LaPlace Transform.

3. The resulting frequency domain functions are used to solve for the transfer functions using direct
substitution.

C Appendix: Operating Point Model Solution

Following the steps outlined in Appendix B.3, the Operating Point Model is derived here.

C.1 Taylor Series Approximation

The Taylor Series Approximation is a series expansion of a function about an operating point. The
delta–values represent a figurative change needed to determine the secant line at the operating point.

F(xop + ∆x, vop + ∆v, Vpop + ∆Vp, Vinop + ∆Vin, fdop + ∆fd) =

F(xop, vop, Vpop, Vinop, fdop) + ∆x
∂F
∂x

∣∣∣∣
op

+ ∆v
∂F
∂v

∣∣∣∣
op

+ ∆Vp
∂F
∂Vp

∣∣∣∣
op

+ ∆Vin
∂F
∂Vin

∣∣∣∣
op

+ ∆fd
∂F
∂fd

∣∣∣∣
op

+

∆x2∂
2F
∂x2

∣∣∣∣
op

+ ∆v2∂
2F
∂v2

∣∣∣∣
op

+ ∆V 2
p

∂2F
∂V 2

p

∣∣∣∣
op

+ ∆V 2
in

∂2F
∂V 2

in

∣∣∣∣
op

+ ∆f 2
d

∂2F
∂f 2

d

∣∣∣∣
op

+

∆x3∂
3F
∂x3

∣∣∣∣
op

+ ∆v3∂
3F
∂v3

∣∣∣∣
op

+ ∆V 3
p

∂3F
∂V 3

p

∣∣∣∣
op

+ ∆V 3
in

∂3F
∂V 3

in

∣∣∣∣
op

+ ∆f 3
d

∂3F
∂f 3

d

∣∣∣∣
op

+ ...

∴ ∆F = F(xop + ∆x, vop + ∆v, Vpop + ∆Vp, Vinop + ∆Vin, fdop + ∆fd)−F(xop, vop, Vpop, Vinop, fdop)

= ∆x
∂F
∂x

∣∣∣∣
op

+ ∆v
∂F
∂v

∣∣∣∣
op

+ ∆Vp
∂F
∂Vp

∣∣∣∣
op

+ ∆Vin
∂F
∂Vin

∣∣∣∣
op

+ ∆fd
∂F
∂fd

∣∣∣∣
op

The partial derivative of each function of the Governing Differential Equations with respect to each
input and output variable produces the A–matrix and B–matrix shown in (C.1). These equations are
shown in Block Diagram Form in Figure 3.1 and in equation form in (3.1), (3.2), and (3.3).

 d∆x
dt

d∆v
dt

d∆Vp

dt

 =

 0 1 0
V 2
popε0εrAc

Mp(x0−xop)3 − Ks

Mp
− bp

Mp

Vpopε0εrAc

Mp(x0−xop)2

−Vinop−Vpop

Rinε0εrAc
0 − x0−xop

Rinε0εrAc


∆x

∆v
∆Vp

+

 0 0
0 − 1

Mp
x0−xop

Rinε0εrAc
0

[∆Vin
∆fd

]
(C.1)

C.2 Solving For Constants

Comparing the reduced Taylor Series Approximation equations ((3.4), (3.5), (3.6)) with the provided
Operating Point Equations ((A.1), (A.2), (A.3)), K0, F0, and C0 can be solved for.
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Operating Point Capacitance, C0

The Operating Point Capacitance in (A.3), C0, is easily the inverse of the remaining piece of the
equation shown in (3.6) which is also equivalent to the Capacitance equation at the operating point
xop.

∆Vin −∆Vp
RinC0

=
∆Vin −∆Vp

RinC0

ε0εrAc

x0 − x

C0 =
ε0εrAc

x0 − xop
= Cp(xop) (C.2)

Operating Point Stiffness, K0

Since K0 is shown along with Ks in the product with ∆x in (A.2), the Operating Point Stiffness in
(A.2), K0, is easily seen when reviewing (3.5). Operating Point Stiffness is a function of the plate
voltage Vpop and plate location xop at the operating point.

1

Mp

[(
V 2
popε0εrAc

(x0 − xop)3
−Ks

)]
∆x =

1

Mp

(K0 −Ks)∆x(
V 2
popε0εrAc

(x0 − xop)3
−Ks

)
∆x = (K0 −Ks)∆x

∴ K0 =
V 2
popε0εrAc

(x0 − xop)3
(C.3)

Operating Point Charge per Meter, F0

The Operating Point Charge per Meter in (A.2), F0, is easily seen when reviewing (3.5). Since F0

is multiplied only by ∆Vp, the term can be reduced. Similar to Operating Point Stiffness, Operating
Point Charge per Meter is a function of plate voltage Vpop and plate distance location xop at the
operating point.

Vpopε0εrAc

(x0 − xop)2
∆Vp = F0∆Vp

∴ F0 =
Vpopε0εrAc

(x0 − xop)2
(C.4)

D Full Transfer Function Matrix

Out of curiosity, I solved the entire transfer function matrix using substitution and doing one at a
time. The final result is shown in (D.2). x(s)

v(s)
Vp(s)

 =

HxVin
(s) Hxfd(s)

HvVin
(s) Hvfd(s)

HVpVin
(s) HVpfd(s)

[Vin(s)
fd(s)

]
(D.1)

 x(s)
v(s)
Vp(s)

 =
1

(K0 −Ks − bps−Mps2)


F0

(1+RinCos)
1

F0s
(1+RinCos)

0
1

(1+RinCos)
s

[Vin(s)
fd(s)

]
(D.2)
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Multiplying the results out from (D.2), we get (D.3), (D.4), and (D.5).

∆x =
F0

(K0 −Ks − bps−Mps2)(1 +RinC0s)
∆Vin +

1

(K0 −Ks − bps−Mps2)
∆fd (D.3)

∆v =
F0s

(K0 −Ks − bps−Mps2)(1 +RinC0s)
∆Vin + 0∆fd (D.4)

∆x =
1

(K0 −Ks − bps−Mps2)(1 +RinC0s)
∆Vin +

s

(K0 −Ks − bps−Mps2)
∆fd (D.5)

With enough time and patience, a complete sensitivity analysis could be done using these functions.

E Appendix: Dynamic Stiffness Derivation

Dynamic Stiffness is solved using superposition to look at ∆fd, setting ∆Vin = 0. Looking at (5.3),
the only solution for ∆Vp is ∆Vp = 0. We also know from (5.1) that ∆v = s∆x. Making these two
substitutions into (5.2) and doing some basic algebraic manipulation, we can solve for the Dynamic
Stiffness shown in (E.1).

s(s∆x) =
1

Mp

[(K0 −Ks)∆x− bp(s∆x)−∆fd]

∆fd = (K0 −Ks)∆x− bps∆x−Mps
2∆x

∴
∆fd
∆x

= K0 −Ks − bps−Mps
2 (E.1)

where

K0 =
V 2
popε0εrAc

(x0 − xop)3

The only unknown variable in (E.1) is Vpop which can be solved for using the original Governing
Differential Equation for dv

dt
, (1.2).

At the operating point in steady state, velocity vop and acceleration dv
dt

are zero. The disturbance force
fdop is also zero. This greatly reduces the equation making it possible to solve for Vpop.

dv

dt
=

1

Mp

[
1

2
V 2
pop

ε0εrAc

(x0 − xop)2
−Ksxop − fdop − bpvop

]
0 =

1

Mp

[
1

2
V 2
pop

ε0εrAc

(x0 − xop)2
−Ksxop

]
1

2
V 2
pop

ε0εrAc

(x0 − xop)2
= Ksxop

∴ Vpop = ±

√
2Ksxop(x0 − xop)2

ε0εrAc

(E.2)

F Appendix: Resonant Frequency Analysis

The resonant frequency could be a big problem so a closer look was warranted. To get a clearer picture
of where the resonant frequency is across a range of xop values, the three-dimensional plot in Figure
F.1 was produced.
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Figure F.1: A plot showing Frequency (f) vs Plate Position (xop) vs Magni-
tude (∆fd

∆x
) shows a better big picture of what is going on with the resonance

frequency.

In Figure F.1, there is a clear trough that designers of the DMD should stay away from if at all
possible. Digging a little bit further, Figure F.3 shows the frequency response moving away from the
trough. It is clear that using an xop value larger than 0.033333mm is desirable.

Solving the Transfer Function at the trough location happens when xop = 1
30
mm or 0.0333̄mm and

the frequency f is 0.0001Hz yields a Dynamic Stiffness of 0.00014999. I used this value to solve the
function for xop in order to effectively create a contour plot of Figure F.1 within the trough. The result
is shown in Figure F.2.
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Figure F.2: A plot of Frequency vs Plate Position with the Dynamic Stiff-
ness set to 0.00014999 N/m.

Figure F.3: As the operating point position xop is varied near the trough,
getting smaller than 0.033333mm (left) leads to resonant frequencies while
getting larger than 0.033333mm (right) leads to no resonant frequencies.
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