
CE 126: Advanced Logic Design
Midterm Report

Darrell Ross
sdr85@cats.ucsc.edu



1

1. Introduction
The SRAM tester that I designed for the BORG board went through several design stages. The first

design was one giant, twenty-eight state, FSM that did everything except generate the patterns. The main

point of that design was to have a working design for the check-in point and to learn how everything

worked. I actually had another design that had the SRAM memory control in a separate block but I

could not get it to work in time.

After the check-in, I got rid of my huge FSM and worked on building a glitchless SRAM control block.

I got my design working pretty quickly because I had learned all of the ways-of-the-road during the

design of the previous machine. Another advantage was when I collaborated with other people— not

really for design ideas but for possible bugs in individual designs. This helped me avoid a lot of possible

bugs ahead of time, like tri-stating the SRAM control and making sure my OE SRAM signal went low

for the right length of time. The people that I worked closest with were Vincent, Max, and Chris. Saar

also gave me some good pointers.

2. Blocks
I split my design into three main blocks: the SRAM control, the pattern generator, and the main control

unit which controlled the first two and all other blocks. Minor blocks include the thirteen bit counter, the

edge detector, and the eight-bit comparator.

2.1 SRAM Control
The SRAM control was difficult to build. My first design used sequential encoding which left lots of

room for glitches. For my final design, I followed Vincent's advice. The best way to design glitchless

control was using one-hot encoding. However, my SRAM control has seven states and that would have

meant seven bits. It was much easier to use a state table to design the state bits to fit the outputs as

Vincent had suggested. In the end, the three-input, four-output FSM used only four flip-flops and was

much easier to use.

2.2 Pattern Generator
My first pattern generator was a fairly large FSM that had nine states and seventeen outputs (eight for

each pattern and one for the pattern TC). Long showed me the beauty of the shift register. Unfortunately,

it had far too many inputs. I asked Martin and she fixed it by suggesting that we build our own and then

showing us how! Her design works perfectly and is nice and compact using nine flip-flops and having

the read pattern be one step behind the write pattern.



2

2.3 Main Control
The main control of my SRAM tester has thirteen states. I have diagramed the FSM in the following

pages. The main control has five inputs, besides the clock:

GO ~ go signal to start test

EQ ~ result of comparator

TC13 ~ terminal count for the 13-bit counter

TCP ~ terminal count for the pattern generator

DONE ~ done signal from SRAM instructions

and eight outputs:

CE13 ~ 13-bit counter clock enable

CEP ~ pattern generator clock enable

RD ~ read signal sent to SRAM

WR ~ write signal sent to SRAM

ERR ~ error signal (only low in ERR state)

PASS ~ pass signal (only low in PASS state)

IN ~ bit shift value for pattern generator

TRI ~ tri-state enable for the address bus

One very convenient way of debugging with this software is to make sure that Mustang encodes the

FSM exactly the way you want it so that you can tap the PS or NS wires and tell what state you are in. I

was able to look at the screen and think "yes, that's the right sate."

The main control basically follows the psuedocode laid out in the assignment: a simple two-state pattern

of writing the first pattern and then incrementing the 13-bit address counter is first. Followed by a

read/check and write cycle which tests each patter on each address except for the last patter. The final

part checks just that last pattern.

2.4 Miscellaneous
My edge detector is simply two flip flops that I could probably just put out in the open. The comparator

is just a block from the Xilinx libraries.

3. Interconnections
When my main control sends a RD signal to the SRAM, the RD signal remains high the entire time. The

same is true for a WR signal. I found it convenient that, when I delayed the write signal for one clock

cycle using a flip-flop, it could be used as the tri state enable. the Pass and Error signals are only active

in their respective states and somehow I managed to flip them around so that a '1' response is a pass and

a '2' response is an error. I had the unfortunate problem of having the Done signal from the SRAM

controller return after the CS and OE signals went high. This meant that the BORG could never do the

comparison because the equal search came after the read signal finished. In the end, I just delayed the

EQ signal with a flip-flop.



3

4. Conclusion
This project was very educational and fun. It took a bit too much time though. I have run the tester and it

gives and error on all the correct inputs and passes correctly as well.


